

Healthscope Functional Pathology 1868 Dandenong Road, Clayton, Victoria 3168, Australia www.functionalpathology.com.au ABN 62 006 823 089 T 1300 55 44 80 F 03 8540 5555 infofp@healthscope.com.au

LAB No:

Consulting Pathologist: Dr D. Dean

Patient :
D.O.B. :
Request Date :
Date Received :
Requested by :
Referring Practice :
Provider No. :
REFERRING PRACTICE REFERENCE:

FUNCTIONAL LIVER DETOXIFICATION PROFILE (FLDP)

COMMENT

Tests ordered: FLDP,PP FINAL REPORT on 11 Jul 2011 13:18

FUNCTIONAL LIVER DETOXIFICATION PROFILE (FLDP) INTERPRETIVE GUIDE

Phase 1 Interpretation (Caffeine Clearance)

The Cytochrome P450 enzymes are the predominant enzyme system involved in Phase I liver detoxification. Their role is to convert toxic substances into more water soluble molecules, so they can be further metabolised in Phase II.

Result	Possible Cause	Treatment Considerations
High Phase 1	 Excessive cytochrome P450 induction from exposure to: Alcohol, nicotine, caffeine, stress Drugs - steroids, sulphonamides, barbiturates, HRT Toxins - exhaust fumes, paint fumes, dioxin and organo-phosphorous pesticides High protein diets 	 Naringenin (found in grapefruit juice) St Mary's thistle Antioxidants (A, C, E, Zn, Se)
Low Phase 1	 Reduced activity of cytochrome P450 from exposure to: Drugs - benzodiazepines, antihistamines, ketoconazole, fluconazole, erythromycin, SSRIs, H2 blockers 	 Green tea (catechins) Turmeric Vitamin B complex Bioflavonoids Glutathione & its precursors (glycine, glutamine, cysteine)

Intermediate Phase Interpretation

When Phase I activity is high, there is increased metabolic activity at the intermediate phase (before the molecules are presented to Phase II for conjugation). This results in an increased production of free radicals and the potential for secondary tissue damage. It is therefore essential that adequate antioxidants are available to counteract this high free radical activity.

Treatment Considerations for the Intermediate Phase

Vitamins A, C and E, Co-Enzyme Q10, Zinc and Selenium

Phase II Interpretation

Phase II reactions involve the addition of a small polar molecule to the substance, a conjugation step that may or may not be preceded by Phase I. Several types of conjugation reactions occur in the body, including glutathionation, sulphation, glucuronidation and glycination conjugation. These reactions require nutrient cofactors, which are essential for proper detoxification.

Prolonged stress on a particular Phase II pathway will cause an increase in free radical damage which, in turn, will reduce liver function in the long term.

Low Phase II - indicates down regulation of one or more conjugation pathways resulting in inadequate Phase II conjugation reactions.

High Phase II - indicates excessive conjugation of individual or all biochemical pathways, resulting in an increased concentration of metabolic products.

FUNCTIONAL LIVER DETOXIFICATION PROFILE (FLDP)

Pathway	Responsible for Conjugation of	Treatment Considerations
 Glutathionation A significantly used pathway which is dependant on the tripeptide glutathione (glycine, glutamine, cysteine) Individuals with diagnoses of arthritis, diabetes or heart disease may have lower glutathione levels than those who are disease free 	 Pesticides Paracetamol Toxic Metals, e.g. Hg, Cd, Pb Penicillin Tetracycline Petroleum distillates Alcohol 	 Glycine, glutamine & cysteine Methionine DIM/Cruciferous vegetable Vitamins B2, B6, C Selenium St Mary's thistle Glutathione
 Sulphation It is dependant on a depletable supply of inorganic sulphate Sulphation is 'rate limited' by the amount of sulphate available to the liver See Sulphate:Creatinine ratio Compensatory mechanism for other Phase II pathways 	 N-acetylcysteine (progesterone, DHEA and melatonin) Phenols (aromatic hydroxyl groups including histamine, dopamine, gallic acid and coumarin) Catecholamines (adrenalin, noradrenalin) 	 Sulphur-containing amino acids (methionine, cysteine, taurine) Sulphur-rich foods (garlic, onions, cabbage) Molybdenum (cofactor for sulphite oxidase) Support other pathways as needed
 Glucuronidation Estimated to account for 33% of all drugs metabolised by Phase II detoxification 	 Sex hormones, especially oestrogens Paracetamol NSAIDs Benzodiazepines 	 Calcium d-glucurate* Magnesium Zinc Vitamin B complex Essential Fatty Acids
GlycinationPredominantly involved in salicylate conjugation	 Salicylic acids (e.g. aspirin) Benzoic acids (some ointments & food preservatives) Phenylacetic acids (found in nuts & cigarettes) 	 Glycine Vitamin B6 Magnesium Reduce salicylates

*Calcium d-glucurate is metabolised to d-glucaro-1, 4-lactone (glucaro lactone GL). GL is a direct inhibitor of beta-glucuronidase, an enzyme found in the gut that cleaves bound oestrogens and carcinogens from their Phase II conjugates and permits reabsorption through the entero-hepatic circulation. By inhibiting beta-glucuronidase activity, GL increases the net elimination of carcinogens, toxins and steroid hormones via glucuronidation.

Ratios

Sulphate:Creatinine

This reflects the level of sulphur available from dietary sources and should be considered in conjunction with the Phase II sulphation result.

Phase I: Glycination and Phase I: Glucuronide

These two ratios reflect the relationship between Phase I and these conjugation pathways and will demonstrate whether the biochemical load from Phase I is high or low.

Sulphate:Glucuronide

This ratio reflects the relationship between sulphate and glucuronide. Sulphate is often up regulated to compensate for low glucuronide.

Phase I:Sulphation

This reflects the relationship between Phase I and the sulphation pathway and demonstrates whether the biochemical load from Phase I is too high.

Note: When all the ratios are high in an FLDP report, this commonly reflects a patient who is highly sensitive and may have multiple food and chemical sensitivities.